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Abstract

The quaternions were discovered by Hamilton in 1843. They were a recondite branch of pure mathe-
matics until they began to be used for specifying the smooth interpolation of rotating bodies in spacecraft
dynamics, robotics and computer animation. This article explains the mathematical connection between
quaternions and rotations in three dimensions, and how great circle interpolation of unit quaternions
gives smooth rotation paths.

The PC program qrot demonstrates these concepts. It can be obtained from www.ncvp.co.uk.

1 Affine transformations in computer graphics

A common application in computer graphics is the projection of a three dimensional scene onto a two
dimensional display surface. The objects in the scene are constructed of points, lines, surfaces and so on,
which are themselves defined by sets of three dimensional vectors x = (x0, x2, x2). The movement of the
objects in the scene consists of invertible rotations followed by translations

x 7−→ xR+ t

where R is a rotation matrix in SO(3) and t = (t0, t2, t2) is a translation. This transformation can be
represented as a single matrix multiplication

(x 1) A = (xR+ t 1) where A =

(
R 0
t 1

)
(1)

This representation is very convenient because nested transformations are equivalent to a sequence of matrix
multiplications. If an object moves (Aobj) on a table which itself is moving (Atable) in a room, the movement
of the object in the scene is represented by AobjAtable. In fact, the final projection of the scene onto the
screen can also be expressed as a multiplication by a matrix in M4(R), and all this matrix arithmetic is
normally performed in hardware.
It is clear from equation 1 that translation and rotation are fundamentally different transformations. They
are normally handled completely separately in computer graphics applications.

2 Interpolation

Smooth movement must often be interpolated between given key positions. These keys might be samples
from position encoders, calculations at discrete times in a numerical simulation, or key frames specified by
an animator.
Suppose the translations of an object at two keys are given by the vectors t0 and t1, and the object must
move from the first to the second as a time-like parameter, t, is varied from 0 to 1.
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A natural movement is given by the simple formula

t(t) = (1− t)t0 + tt1 (2)

Can this method be used to interpolate rotations from R0 to R1? Term-wise interpolation of the matrices
is of no use, because

R(t) = (1− t)R0 + tR1

gives a matrix R(t) which is generally not even in SO(3).

Orientations are frequently expressed in terms of rotations about the three Cartesian axes in some specified
order. The sizes of these rotations are called Euler angles in programming circles, and it is possible to linearly
interpolate them. Unfortunately, this does not usually produce a smooth change in orientation, as you can
see by trying the program qrot.

3 Euler’s rotation theorem

Any orientation-preserving mapping of a sphere onto itself is equivalent to a rotation about a diameter of
the sphere. If the mapping is not the identity this rotation is unique (apart from the opposite rotation about
the opposite axis).

Proof:
The transformation is specified by its effect on two points of the sphere. Let the transformation T map the
point q to the point r, and let p be the point such that T : p −→ q. Then T maps the great circle arc pq
onto qr. Let Π be the plane containing p, q and r, and D be the diameter of the sphere perpendicular to Π.
T is represented by a rotation about D which maps the arc pq ∈ Π into qr ∈ Π.

4 Angle-axis representation of SO(3)

An element of SO(3) may be described as the clockwise rotation by θ about an axis specified by a unit
length vector vector a. This angle-axis (θ,a) representation is not unique, even if θ is limited to the interval
[0, 2π), since (θ,a) = (2π − θ,−a), but the mapping (θ,a) −→ SO(3) is well defined, as follows
In figure 1 p is a point not on the axis of rotation and q is its image after a rotation of θ. Πp is the plane
perpendicular to the axis of rotation which contains p and q. r is the point where Πp meets the axis of
rotation. s is the point at which the perpendicular from q meets the plane containing 0, p and r.
From the figure

∥p− r∥ = ∥q− r∥ = ∥p∥ sinϕ
s = r+ cos θ(p− r)

∥q− s∥ = ∥p− r∥ sin θ = ∥p∥ sin θ sinϕ
a = r/∥r∥
r = (p • a)a

Then, because q− s is parallel to r× p

q− s = ∥q− s∥ r× p

∥r× p∥
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Figure 1: (from [4])

= ∥p∥ sin θ sinϕ r× p

∥r∥∥p∥ sinϕ
= sin θ(a× p)

So

q = sin θ(a× p) + r+ cos θ(p− r)

= sin θ(a× p) + (1− cos θ)(p • a)a+ cos θp (3)

To express this result in matrix terms some subsidiary results are required.

The cross product of two vectors is given by

x× a = det

 i j k
x0 x1 x2

a0 a1 a2


= (x1a2 − x2a1, x2a0 − x0a2, x0a1 − x1a0)

= xA where A =

 0 −a2 a1
a2 0 −a0
−a1 a0 0


The projection of a vector on a unit vector, a, is given by
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(x • a)a = (x0, x1, x2)

 a0
a1
a2

 (a0, a1, a2)

= (x0, x1, x2) M where M =

 a20 a0a1 a0a2
a0a1 a21 a1a2
a0a2 a1a2 a22


Now

A2 =

 −a21 − a22 a0a1 a0a2
a0a1 −a20 − a22 a1a2
a0a2 a1a2 −a20 − a21


hence

(x • a)a = x(I+A2)

So equation 3 becomes

q = pA sin θ + p(I+A2)(1− cos θ) + pI cos θ

= pA sin θ + pI+ pA2(1− cos θ)

Hence q = pRa(θ), where

Ra(θ) = I+A sin θ +A2(1− cos θ)

This is a convenient form for calculations.

5 Ra(θ) is a 1-parameter subgroup of SO(3)

A further property of A is

A3 =

 a0a1a2 − a0a1a2 a2(a
2
0 + a22) + a2a

2
1 −a1(a

2
0 + a21)− a1a

2
2

−a2(a
2
1 + a22)− a2a

2
0 a0a1a2 − a0a1a2 a0(a

2
0 + a21) + a0a

2
2

a1(a
2
1 + a22) + a1a

2
0 a0(a

2
0 + a22) + a0a

2
1 a0a1a2 − a0a1a2

 = −A

hence

An =

{
(−1)(n−1)/2A if n is odd
(−1)(n−2)/2A2 if n is even

Now

sin θ = θ − θ3

3!
+

θ5

5!
− θ7

7!
. . .
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and

1− cos θ =
θ2

2!
− θ4

4!
+

θ6

6!
. . .

so

sin θA = θA− θ3

3!
A+

θ5

5!
A− θ7

7!
A . . .

= θA+
θ3

3!
A3 +

θ5

5!
A5 +

θ7

7!
A7 . . .

and

1− cos θA =
θ2

2!
A− θ4

4!
A+

θ6

6!
A . . .

=
θ2

2!
A2 +

θ4

4!
A4 +

θ6

6!
A6 . . .

So

Ra(θ) = I+A sin θ +A2(1− cos θ)

= I+ θA+
θ2

2!
A2 +

θ3

3!
A3 +

θ4

4!
A4 . . .

= exp(θA)

6 Quaternions represent rotations

A quaternion has the form q = w+ xi+ yj + zk, where w, x, y and z are real numbers, i2 = j2 = k2 = −1,
ij = k = −ji, jk = i = −kj, and ki = j = −ik. The set of all quaternions is called H after Hamilton.

The inner product of two quaternions is q1 • q2 = w1w2 + x1x2 + y1y2 + z1z2, so the norm of a quaternion
∥q∥ is (q • q)1/2.

The set of unit quaternions S3 = {q : ∥q∥ = 1} is the surface of a sphere in R4.

A unit quaternion may be expressed in the form q(θ,a) = cos θ + sin θâ, where â = a0i + a1j + a2k, and
∥â∥ = 1.
â and a may be identified, and sometimes â will appear as both a vector and as a pure quaternion. Notice
that

ââ = (u0i+ u1j + u2k)(u0i+ u1j + u2k)

= −u2
0 − u2

1 − u2
2 + (u1u2 − u1u2)i+ (u0u2 − u0u2)j + (u0u1 − u0u1)k = −1

so care must be used when computing quaternion products in this form.

There is a useful identity like Euler’s for complex numbers
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exp(θâ) = 1 + θâ+
θ2

2!
â2 +

θ3

3!
â3 + . . .

= θâ− θ3

3!
â+

θ5

5!
â+ . . .

1− θ2

2!
+

θ4

4!
− θ6

6!
+ . . .

= cos θ + sin θâ

7 Interpolating unit quaternions

Suppose we have two orientations represented by R0 and R1 in SO(3). Previous sections have shown that
R1 = R0R(θ,a), and that a smooth intermediate path is obtained with R(t) = R0R(tθ,a), for t in [0, 1].
Let q0 = cosϕ+ sinϕû and cos θ + sin θâ correspond to the rotations R0 and R(θ,a).
Let q(t) = q0(cos(tθ) + sin(tθ)â). Then q(0) = q0 and q(1) = q1 and

q(t) = cos(tθ)q0 + sin(tθ)q0â

= cos(tθ)q0 −
cos θ sin(tθ)

sin θ
q0 +

cos θ sin(tθ)

sin θ
q0 + sin(tθ)q0â

=
1

sin θ
((sin θ cos(tθ)− cos θ sin(tθ))q0 + cos θ sin(tθ)q0 + sin θ sin(tθ)q0â)

=
1

sin θ
(sin(θ − tθ)q0 + sin(tθ)q0(cos θ + sin θâ))

=
sin(θ − tθ)

sin θ
q0 +

sin(tθ)

sin θ
q1
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